LIVES ARE FLOWING IN ONE INDEPENDENT CHAIN

SUNIRMAL ROY

ABSTRACT : Mainly nineteen cellular entities take place in mainly thirty chemical reactions in a cell. The cell is divided into two when the cellular entities are doubled at a time. In this way growth process takes place in a living body.

From the equations of cell-generation-time it is proved that lives are not flowing in more than one independent chain.

INTRODUCTION, FORM ULATION AND SOLUTION OF THE	RNA polymerase for messenger RNA (M)
PROBLEM	
Growth is a basic property of biological species, and growth	Enzymes which convert external pool ($\mathrm{P}_{\mathbf{e}}$)
upled with cell-divisions leads to an increase in population. In F.	pool (P_{i}).

Rate constant Kn, Ka and Kt determine what fraction of total protein represents respective enzymes.

Genes:-		
	$\mathbf{G}_{\mathbf{e}}$	Genes for messenger RNA (M) synthesis.
	$\mathbf{G}_{\mathbf{p}}$	Gene for messenger RNA (M P) synthesis.

ribosome.
$P_{e} \quad$ extra-cellular nutrient pool
$P_{i} \quad$ Gener al intra cellular metabolic pool.
$P_{a} \quad$ Amino acid pool for protein synthesis.
$P_{n} \quad$ Nucleotide pool for RNA synthesis.
Enzymes:-

E	Total protein.
E_{n}	Enzymes which convert internal pool $\left(P_{j}\right)$

into RNA
precursors.
$\mathrm{E}_{\mathrm{a}} \quad$ Enzymes which convert internal pool $\left(\mathrm{P}_{\mathrm{i}}\right)$
into amino acid.
$E_{p} \quad$ RNA polymerase for messenger RNA (M)
$E_{t} \quad$ Enzymes which convert external pool (P_{e})
pool (P_{i}). Genes:-

Terminology and Symbols
Pools:-
$E_{n} \quad$ Enzymes which convert internal pool (P_{i})
$\mathbf{G}_{\mathbf{c}} \quad$ Gene for tr ansport RNA (C) synthesis.

M essengers:-

M Messenger (RNA) for protein (E)
synthesis.

Mp	M essenger (RNA) for Ep synthesis
B'	RNA fraction of ribosome.
B	Ribosome.
C	Transport RNA
N	Ribosome \& messenger complex for

protein (E) synthesis.
Np Ribosome and messenger complex for Ep
synthesis (template).

I nactive state of N .
N'p Inactive state of NP.

$G B+r_{10} x_{3}$ of B
4. $\quad f_{11} x_{4}$ of $G C+r_{12} x_{4}$ of $P=r_{13} x_{4}$ of

GC+r ${ }_{14} x_{4}$ of C
5. $\quad r_{15} x_{5}$ of GP+r ${ }_{16} x_{5}$ of $P=r_{17} x_{5}$ of

GP+r $18 x_{5}$ of M p
6. $r_{19} x_{6}$ of Ge+r ${ }_{20} x_{6}$ of Ep $P=r_{21} x_{6}$ of
$\mathrm{Ge}+\mathrm{r}_{22} \mathrm{x}_{6}$
$B+r_{36} X_{10}$
$M+r_{38} X_{10}$ of B
$B+r_{42}{ }^{x_{11}}$
11. $r_{39} x_{11}$ of $N P=r_{40} x_{11}$ of $C P a=r_{41} x_{11}$ of
of
$M \mathrm{p}+\mathrm{r}_{43} \mathrm{X}_{11}$ of $\mathrm{C}+\mathrm{r}_{44} \mathrm{x}_{11}$ of Ep
12. $\mathrm{r}_{45} \mathrm{x}_{12}$ of $\mathrm{M}=\mathrm{r}_{46} \mathrm{x}_{12}$ of Pn .
13. $r_{47} x_{13}$ of $M p=r_{48} x_{13}$ of Pa
14. $\mathrm{r}_{49} \mathrm{x}_{14}$ of $\mathrm{B}=\mathrm{r}_{50} \mathrm{x}_{14}$ of Pi
15. $\quad \mathrm{r}_{51} \mathrm{x}_{15}$ of $\mathrm{C}=\mathrm{r}_{52} \mathrm{x}_{15}$ of Pi.
16. $r_{53} x_{16}$ of $E=r_{54} x_{16}$ of Pi.
17. $r_{55} x_{17}$ of $E p=r_{56} x_{17}$ of Pi.
18. $r_{57} x_{18}$ of ${ }^{P e+r_{58} x_{18}}$ of $E i=r_{59} x_{18}$ of
$\mathrm{Pi}^{+r} \mathrm{r}_{60} \mathrm{x}_{18}$ of Et.
19. $r_{61} x_{19}$ of Pi+r $62 x_{19}$ of $E n=r_{63} x_{19}$ of $\mathrm{Pn}^{+r} \mathrm{r}_{6} \mathrm{X}_{19}$ of En.
20. $\quad r_{65} x_{20}$ of ${ }^{P i+r_{66}} x_{20}$ of $E a=r_{67} x_{20}$ of

21. $r_{69} x_{21}$ of $E p+r_{70} x_{21}$ of $C=r_{71} x_{21}$ of

EpC.
22. $\quad r_{72} x_{22}$ of $E+r_{73} x_{22}$ of $\mathrm{Pi}=r_{74} x_{22}$ of Epi.
23. $r_{75} x_{23}$ of $E p+r_{76} x_{23}$ of $B=r_{77} x_{23}$ of EpB.

N'p.

Np.
24. $r_{78} x_{24}$ of $N p+r_{79} x_{24}$ of $\mathrm{Si}=r_{80} x_{24}$ of
25. $\quad r_{81} x_{25}$ of $N^{\prime}{ }^{p+r}{ }_{82} x_{25}$ of $S i=r_{83} x_{25}$ of
26. $\quad r_{84} x_{26}$ of $N+r_{85} x_{26}$ of $\mathrm{Si}=\mathrm{r}_{86} \mathrm{x}_{26}$ of N .
27. $r_{87} x_{27}$ of $N^{\prime}+r_{88} x_{27}$ of $\mathrm{Si}=\mathrm{r}_{89} \mathrm{X}_{27}$ of N.
28. $\quad r_{90} x_{28}$ of $N=r_{91} x_{28}$ of Pi.
29. $\quad \mathrm{r}_{92} \mathrm{X}_{29}$ of $\mathrm{Np}=\mathrm{r}_{93} \mathrm{x}_{29}$ of Pi .
30. $\quad r_{94} x_{30}$ of $\mathrm{Pi}=\mathrm{r}_{95} \mathrm{x}_{30}$ of X .

Where $r_{1}, r_{2} \ldots \ldots . . r_{95}$ are constants. The equations of Table 1 are written on the understanding that the quantitative measure of the entities in a reaction are one to another in constant ratios. These constants are r1, r2.....etc. which can be calculated. These are independent of the rate constants which are not fixed. Therefore the defect of F Heinmets ${ }^{1}$ is eliminated in this model.

Let the measure of the functional entities.
Ep, Pn, Ep, B', B, C, M, Mp, N, N'p, Pa, CPa, E, Pi, EpC, EpB, Epi, respectively initially be
$x_{31}, x_{32}, x_{33}, x_{34}, x_{35}, x_{36}, x_{37}, x_{38}, x_{39}, x_{40}, x_{41}, x_{42}$, $X_{43}, X_{44}, X_{45}, X_{46}, X_{47}, X_{48}, X_{49}$.

Since it is assumed that all functional entities are approximately doubled after one generation time of the cell, therefore we get the equations of Table 2.

TABLE-2

6. $x_{36}=r 14 \times 4-r 30 \times 9+r 36 \times 1+r 43 \times 11-r 51 \times 15-r 70 \times 21$
7. $\quad x_{37}=r_{23} x_{6}-r_{25} x_{7}-r_{45} x_{12}+r_{37} x_{10}$
8. $x_{38}=r_{18} x_{5}-r_{28} x_{8}+r_{42} x_{11^{-r}} 47^{x_{13}}$
9. $\quad x_{39}=r_{26} x_{7}-r_{33}{ }_{10}{ }^{-r} 84^{x_{26}}{ }^{+r} 89^{x_{27}}{ }^{-r}{ }_{90}{ }^{x_{28}}$

11. $\mathrm{x}_{41}=\mathrm{r}_{86} \mathrm{x}_{26}-{ }^{-}{ }_{87} \mathrm{x}_{27}$
12. $\mathrm{x}_{42}=\mathrm{r}_{80} \mathrm{x}_{24}{ }^{-\mathrm{r}} 81^{\mathrm{x}_{25}}$
13. $x_{43}=r_{31} x_{9}+r_{67} x_{20}$
14. $x_{44}=r_{32} x_{9}-r_{34} x_{10^{-r}} 40^{x_{11}}$
15. $\mathrm{X}_{45}=-\mathrm{r}_{5} \mathrm{X}_{2}+\mathrm{r}_{38} \mathrm{X}_{10} 0^{-r}{ }_{53} \mathrm{X}_{10}{ }^{-\mathrm{r}} 72^{\mathrm{X}} 22$
16. $\quad x_{46}=r_{50} x_{14}+r 2 x_{15}+r_{54} x_{16}+r_{56} x_{17}+r_{59} x_{13}{ }^{-r}{ }_{61} x_{19}+r_{91} x_{28}-$

17. $X_{47}=r_{71} x_{21}$
18. $\mathrm{X}_{48}=\mathrm{r}_{77} \mathrm{x}_{23}$
19. $\mathrm{x}_{49}=\mathrm{r}_{74} \mathrm{x}_{22}$

Since $x_{31}, x_{32}, \ldots . x_{49}$ are fixed in an individual body and the ratios $r_{1}, r_{2} \ldots . . . r_{94}$ can be calculated therefore there are 30 variables x_{1}, $x_{2} \cdots \cdots x_{30}$, and 19 equations.

There are 30 variables and 19 equations and hence 11 variables can be given arbitrary values satisfying the corresponding equations i.e degree of freedom is 11 . Let the solutions make \mathbf{V} vector space. Let the solutions of $x_{1}, x_{2} \ldots . . . x_{30}$ during the whole life of an
individual body make a vector space S . Then S is a subspace of V . Let the solutions of $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \ldots . . \mathrm{x}_{30}$ (during the whole life) of different organs, tissues, different parts of the body make solution vector spaces S_{1}, $S_{2} \ldots \ldots .$. etc. Then $S_{1}, S_{2} \ldots \ldots . .$. etc. are subspaces of S and hence subspaces of v. Considering $X_{31}, X_{32} \ldots . . X_{49}$ these subspaces $S_{1}, S_{2} \ldots S_{n}$ and hence Scan be studied and the relations of different organs, tissues with each other and with the whole body can be known.

The relative growth of different organs, tissues can be shown as constant for an individual body. For this reason, the individual body remains it's shape unchanged. For another individual body of the same species similarly the solution vector-spaces can be studied which is a subspace of V and similarity of growth and shape of the two individuals of the same species can be explained.

The solution spaces of other individual bodies of other species are also subspaces of V and hence similarities and dissimilarities of different individuals of different species can be studied in this respect. Since $x_{31}, x_{32}, \ldots . . x_{49}$ are fixed in an individual body and the ratios r_{1}, $r_{2} \ldots r_{94}$ can be calculated. Therefore there are 30 variables x_{1}, $\mathrm{x}_{2} \ldots \ldots . . \mathrm{x}_{30}$, and 19 equations $\mathrm{So}^{2} 30-19$ that is 11 variables can be arbitrary(d.o.f. is 11).We can choose 11 arbitrary variables in 30 c 11 ways.so number of possible species from one independent chain is 30c11.Sufficient time has passed after the start of life-process Although many new species are yet to be discovered,in spite of that we can say in reality number of species can not be more than 30 c 11 . So it can be concluded that lives are flowing in not more than one independent chain.

REFERENCE

Heinmets,F. - M athematical M odeling in Simulation Process(1970)

